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 ABSTRACT: This paper addresses the issue of stability of steel structures with the emphasis on their sensitivity to initial imperfections 

and clearances. The main aim is to performed an indication as the state of stress, displacement and the critical load. The paper presents 

theoretical studies involving linear and nonlinear behaviour of thin-walled steel structures with a special reference to the interactive 

buckling, initial geometric imperfections and clearances which is in the scope of the modern approach to design. For this purpose author 

proposed different structural models composed of rigid bars where strains are concentrated in connecting elastic joints These models enable 

to derive nonlinear algebraic equilibrium equations which strictly describe pre- and post-buckling behaviour of structures with various 

combinations of imperfections and clearances. Numerous examples demonstrate variable types of structural response depending on the 

modes and amplitudes of imperfections in relation with clearances. 
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1. INTRODUCTION 

Aesthetic and economic reasons have caused the rapid development of 

light-weight, thin-walled steel structures. It was possible thanks to 

modern highly automated cutting, drilling welding and corrosion 

protection and optimal structural design of elements, which can be 

easily manufactured and assembled. It must be underlined that two 

special aspects in design of light-weight steel structures must be 

seriously taken into account, namely fire protection and protection 

against local and global instability. In fact this steel structures are apt to 

fail by loss of global stability, which is the consequence of their high 

slenderness. Moreover they demonstrate tendency to local instability 

phenomena which often appeared at a similar load level as global one. 

The case when two or more different modes in stability and dynamic 

analyses are associated with the same or similar eigenvalues is termed a 

bimodal or multimodal solution. Designers’ concern is that these 

solutions are very sensitive to imperfections. Moreover design engineers 

often face problems of slackened structures e.g. with slotted 

connections. This type of connection can appear at supports or in joints 

between substructures and can take a form of deliberately introduced 

expansion joints or can appear as clearances resulting from cyclic 

loading or manufacturing tolerances. Theory of slackened structures has 

been elaborated by Gawęcki (Ref. 1). He also demonstrated that 

clearances can drastically influence the structural response. This 

influence can be strongly disadvantageous, however, when the 

clearances are properly designed, then they can improve the structural 

response. Various problems of static and dynamic response of slackened 

structures were next studied in a number of papers. Influence of 

clearances on stability response of structures was discussed by Rzeszut 

(Ref. 2). The non-linear dynamic response of two-DOF systems with 

clearances was investigated by Kranjcevic et all (Ref. 3). The authors 

analysed the stability of steady state forced vibrations using the finite 

element in time method. The influence of slotted bolted connection on 

dynamic response of steel frame structures has been studied by Law 

(Ref. 4). The authors proposed the analytical model of slip with friction 

appearing in commonly used slotted bolted connections in steel frame 

structures. Behaviour of bolted connections with slotted holes was also 

investigated by Wald (Ref. 5), who analysed the influence of slotted 

holes in bolted connections on the stiffness and deformation capacity of 

structures and took into consideration the erection tolerances. 

In the present paper, the stability of structures with clearances is studied 

in geometrically linear and non-linear ranges. The phenomena are 

illustrated using simple analytical models, where the clearances are 

consider as a translation or rotation gaps. Next, using FEM models, the 

analysis is carried out on real engineering structures with clearances, 

which take a form of slotted connections. Particular attention is focused 

on local and global buckling modes, which can appear in interactive 

buckling. It can result in excessive sensitivity to imperfections and often 

leads to drastic decrease of the limit load and unstable post-buckling 

behaviour discussed by Szymczak (Ref. 6). Therefore, the post-buckling 

analysis is carried out employing shell elements and introducing initial 

geometric imperfections. The imperfections are described in the form of 

the series of eigenmodes, where a limited number of most critical 

eigenmodes is used and the error minimization in this approximation is 

performed using the method proposed by Rzeszut (Ref. 7). Economic 

and safe design must be based on a reliable structural analysis where all 

essential imperfections and clearances are taken into consideration. On 

the other hand a numerical model of the actual structure cannot be too 

developed and complicated. Otherwise computer time would be too 

great. Of course, in order to demonstrate these phenomena nonlinear 

stability problems must be formulated and solved. 

2. RANGE OF APPLICATION

Thin-walled steel structures can be used in the form of shells and bars 

such as facades, purlins, wall rails, scaffolds and main bearing capacity 

members of structural systems in form of frames or trusses. In the group 

of shell elements, can be distinguish trapezoidal sheets (Fig. 1a), 

sandwich panels (Fig. 1b), panel systems and façade cassettes (Fig. 2a 

and b). They provide high flexibility of solutions and ease and speed 
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assembly, and in combination with the appropriate finishing elements 

complete façade solution. Trapezoidal sheets with a low profile (14 mm 

- 60 mm) are used to cover façade and roof surfaces, while sheets with a 

higher profile (135 mm - 160 mm), due to their strength, are used as 

supporting structures with considerable spans, on the roofs of large 

industrial, commercial and service buildings as well as for the 

production of composite floors. Widespread use on the walls and roofs 

is made of sandwich panels consisting of two steel facings with a 

thickness of 0.5 mm and a structural-insulating core made of 

polyurethane, polystyrene or mineral wool. The high quality of the 

façade's performance distinguished by an interesting visual effect and a 

variety of colours can be obtained by using panel and cassette systems. 

The panels are made of sheets with a thickness of 0.5 mm to 0.7 mm. 

They can reach a maximum span of up to 8 meters, while the minimum 

span may not be less than 1 meter. The cassette systems use galvanized 

sheets with a thickness of 1 mm to 1.5 mm or aluminium sheet with a 

thickness of 1.2 mm. 

a) b) 

Fig. 1 Covering walls and roofs: a) trapezoidal sheets, b) sandwich 

panels (Blachy Pruszyński) 

a) b) 

Fig. 2 Construction details of the façade made of steel thin-walled 

cross-sections: a) facade panels, b) cassettes (Blachy Pruszyński) 

In the range of bar elements, cold-formed cross-sections of Z, C and Σ 

type are use. They are manufactured from galvanized steel strip with a 

thickness from 1.50 mm to 3.00 mm. The typical use of this sections 

usually includes the construction of wall cladding in the form of wall 

rails and roof covering in form of purlin or high storage racks. On the 

purlins, sections with Z and C cross-sections are usually used in a 

single-span or multi-span layout. They constitute also structure of floor 

and frame systems. Usually they are used in form of double cross-

sections because of the weak geometric characteristics with respect to 

torsional resistance of a single cold-formed cross-sections (Fig. 3). 

Recommended spacing of the main load-bearing frames should be a 

multiple of the module 3.00 m or 1.50 m.  

a) b) 

Fig. 3 Frame systems: a) Practa - -double  profiles, b) Blachy 

Pruszyński - double C profiles  

3. THEORETICAL BACKGROUND 

3.1 Initial geometric imperfections 

Geometric inadequacies of metal structures called imperfections are 

inescapable features of a real construction and describe deviation from 

the ideal design characteristic. Geometric imperfections refer to 

deviation of the shape of the structure regarded as a whole or separately 

in the form of structural elements (bars, shells, connections). 

Technological imperfections result from manufacturing and assembly 

processes and generate a clearances in the construction mainly in the 

form of eccentricities and shifts. The standards for the design of metal 

structures EN 1993-1-1 (Ref. 8) describe design geometrical 

imperfections applied to the ultimate load analysis. They are introduced 

to the design model in the form of equivalent deformation or load 

(Fig. 4). According to the standard it is recommended to take into 

account the global imperfections of framework and bracings and local at 

the levels of individual elements. This division is not entirely accurate, 

since both single component and the whole framework system can have 

global and local geometric imperfections as well. In the global analysis 

the geometric imperfections are included in the static calculation model 

in the form of equivalent geometric configuration or by introducing a 

modified loads in static scheme. In the case of multi-storey framework 

the concept of global geometric imperfections is implemented by means 

of an equivalent geometric imperfection in the form of an initial sway 

imperfection, which includes the impact of the real imperfection of the 

initial column sway, eccentricity occurring in the joints during assembly 

process.  

a) b) 

Fig. 4 Equivalent imperfections load system: a) bow, b) sway 

On the other hand geometric imperfections are introduced into the 

numerical model by perturbation of the initial geometry. In classical 

approach it is assumed that imperfections have the form of an 

eigenmode associated with the lowest eigenvalue or in the form of linear 

combination of a few eigenmodes. This approach is in agreement with 

observations that eigenmodes represent the most dangerous shapes of 

imperfections. However, it is still an open question the choice of 

eigenmodes and scale parameters in the linear combination.  

3.2 Clearances in thin-walled structures  

In real engineering structures clearances can be deliberately introduced 

to compensate for unavoidable dimensional tolerances and thus to avoid 

random pre-stress during assembling. The clearances can also be 

introduced with the purpose to improve the structural response, e.g. in 
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elasto-plastic regimes. In thin-walled structures the clearances can be 

formed by cyclic loads. Clearances of this type of are often observed in 

bolted connections of thin walled elements and usually they deteriorate 

the structural response. All types of clearances influence the structural 

response and therefore they should be accounted for in the structural 

analysis and design. Slotted connections are usually modelled by 

introduction bolts in slotted oval long or short holes. Nominal clearance 

of holes for screws and bolts is defined as the difference between the 

nominal size of the bolt and hole diameter. Static and dynamic analyses 

of slackened structures were discussed in the literature. Theory of 

slackened structures has been elaborated by Gawęcki. He also 

demonstrated that clearances can drastically influence the structural 

response. This influence can be strongly disadvantageous, however, 

when the clearances are properly designed, then they can improve the 

structural response, in particular in the elasto-plastic regime, where the 

shake-down plays essential role. In (Ref. 9) Gawęcki and Kuczma 

proposed an incremental formulation of a linear complementary 

problem (LCP) for solving elastic-plastic unilateral contact problems in 

slackened systems. In (Ref. 10) they analysed slackened skeletal 

structures by mathematical programming. 

Influence of clearances on structural stability is still an open question.  

As mentioned before, the slack in real engineering constructions is an 

unavoidable consequence of the occurrence of geometrical tolerances 

and most often occur in the nodes and supports of the structure. 

Therefore, to understand the nature of the clearance in a node or 

support, the relationship between the reaction at the support Rn and the 

displacement un should be analysed. In the case of a construction 

without clearance, the behaviour of the support is described by a model 

of a spring support with an unlimited elastic range (Fig. 5a). The value 

of the reaction Rn depends on the stiffness kn of the support and can be 

calculated using the following relationship: 

Δ=n nnR k u , (1) 

where: kn means stiffness of the support. 

a) b) 

Fig. 5 Graphical representation of reaction forces in support with 

clearances (Ref. 11) 

In the case of structures with clearances o, a support model shown in 

Fig. 5b should be used. In order to describe the relationship between 

displacement un and reaction Rn, two stages are considered: the first, 

when there is clearance between the structure and the support, and the 

second, when as a result of the increase of displacements the right (o
+) 

or left side (o
-)  clearance is removed. Then the reaction at the support 

can be described by the following equations: 
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3.3 Stability analysis 

In the classic stability theory, the basic task is to determine bifurcation 

points or limit points. The bifurcation point can be determined on the 

basis of the solving of the eigenvalue problem, which results in the 

information on the critical load value and the normalized eigenvector. 

On the basis of the critical load value, only the possibility of a multi-

path equilibrium is determined, but no information about the post-

critical behaviour of the structure is obtained. Therefore, it is extremely 

important to determine the type of the bifurcation point. For this 

purpose, an analysis of post-critical states should be carried out by 

determining higher order variations of potential energy. Hence, a stable 

and symmetrical bifurcation point can be distinguished when the 

following conditions are met:  

2 3 40,  0 oraz  0     = =   (3) 

and an unstable bifurcation point when: 

2 3 40,  0 oraz  0     = =  , (4) 

in addition, when: 

2 3 40,  0 oraz  0     =   , (5) 

the bifurcation point is asymmetrical. It is worth to note that the 

achievement of the bifurcation point should not always be associated 

with the mechanism of collapse of the structure. Stability equilibrium 

can take a more complex form when there is more than one minimum of 

potential energy. Stability of thin-walled members with imperfection 

and clearances should be performed based on non-linear studies. The 

non-linear equilibrium equation can be written in the incremental form: 

(KO + KG + KU )U = P (6) 

where KO is the small-displacement stiffness matrix, KG is the initial 

stress matrix, and KU is the displacement stiffness matrix, U is the 

vector of displacement increments, P is the increment of the external 

load vector. The Riks method is used to solve Eq. (6), for both stable 

and unstable post-buckling responses. 

The initial geometric imperfections are introduced by perturbations in 

the “perfect” geometry in the form of series of most critical eigenmodes.  

The vector of imperfections u is introduced in the form: 

  αUuu
T

T
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n

i
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






== 

=1

~~
(7) 

Where: “r” is a consecutive number of displacement in FEM model, “n” 

denotes total number of eigenmodes used to represent the imperfection 

in the approximation, “i” is a consecutive number of eigenmode, uRN 

represents node coordinate perturbation vector of imperfect geometry, i 

is the scale factor associated with the ith buckling mode. The 

eigenvectors U have been computed by solving the linear eigenvalue 

problem: 

(KO + KG )U =  (8) 

where  is the load multiplier and eigenvector U represents the buckling 

mode shapes. In Eq. (8) the proportional loading and linearization of the 

pre-buckling state was assumed. The critical buckling loads are i
crP, 

where P is the reference load (the base state). 

4. EXAMPLES OF STRUCTURAL ANALYSIS

4.1 Stability analysis on model structures 

To illustrate the most typical stability response of structures with 

clearances and make possible the comparison with the response of the 

respective structures without clearances, two 1-DOF model structures 

will be analysed (Ref. 11). First model structure is composed of a 

vertical, perfectly rigid column, supported by a skew bar, which is linear 

elastic with the total longitudinal stiffness k1 [N/m]. Both, the column 

and the skew bar have perfect hinges at the bottom supports and they 

are interconnected also with a perfect hinge. At the upper side of the 

column there is an additional elastic support with the horizontal 

clearance o. It is assume that in the state of large deformation the 

reaction force at the top of column remains horizontal. The initial 

geometric parameters are: lengths of column L and skew bar L1, a is the 

distance between supports and hence the angle =arctg(a/L).  
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a) b) 

c) d) 

Fig. 6 Model structure: a) primary structure, b) clearance is open, 

c), d) clearance is closed (Ref. 11) 

During the deformation the displacement parameters appear: horizontal 

displacement of the upper hinge , rotation of the column  and skew 

bar rotation    These displacement parameters can be computed from 

one control parameter  using the relations: 

sin = /L       and  tg( +) = (a+)/(L cos) (9) 

The actual length L1() of the skew bar and the distance r() of the 

point B are: 

 )(sin
)(1

+

+
=



a
L ( ) += cos)( ar  (10) 

Again, two stages in structural response are observed . The first one, 

when the clearance is open |∆|<∆o , and the critical load equilibrium eq. 

of moment w.r.t. support B leads: 

( )= rSP  where ( ) 111 LLkS −=  (11) 

For small  (see Fig. 6a): 

 sin1 =L  and  sincos == Lar  (12) 

Introducing Eq. (12) into Eq. (11) one obtains a linear stability problem 

with: 

 2

11 sincossin == LkakPcr  (13) 

The post-critical path P- can be calculated as follows: 

( )  )(cos)(
1

111
+−


= akLLP

(14) 

The second stage appears when the clearance is closed |∆|≥∆o (Fig 5b, c) 

and the structural stiffness k2 contributes to the bearing capacity. Then 

the load-displacement relation can be obtained from the balance of 

momentum of the column with respect to the bottom hinge B: 

( )    cos)(cos)(
1

2111
LkakLLP o



−
++−


=

(15) 

The equilibrium paths P-   are presented in Fig. 7. Non-dimensional 

axes are used: displacement L/=  and critical force cr
cr

PPP /= , 

where crP follows from linear solution (13). support (o →) in linear 

and nonlinear stability analysis, respectively. Plot 2 illustrates the 

response of the same structure, but with the elastic support without the 

clearances (o=0). It means that the additional support with the 

structural stiffness k2 is active from the beginning. Plots 2 a, b, c, 

illustrate the influence of increasing values of clearances on stability 

response of the structure. Elastic support is switching on with delay, 

which is the function of the value of the clearance. It is well seen that all 

plots converge asymptotically to the equilibrium path of structure with 

the additional support without a clearance. The model under 

consideration demonstrates unstable post-buckling behaviour, therefore 

the analysis for negative  can provide next information on the stability 

of the structure. In Fig. 8 and 9 the influence of the stiffness of the 

horizontal support on the stability response is presented.  

Fig. 7 Stability response without and with clearances (=0.4) 

(Ref. 11) 

Fig. 8 Asymmetrical unstable bifurcation point = 0.2, b) = 1  

(Ref. 11) 

Fig. 9 Symmetrical and unstable bifurcation point, =10 (Ref. 11) 
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The plots 1a and 1b refer to the primary structure without the additional 

support. We the non-dimensional stiffness coefficient =k1/k2 is 

introduced. One can notice, that for a reasonable small value of , the 

structure demonstrates the asymmetrical and unstable bifurcation point 

(Fig. 8). For a high value of  (Fig. 9), the bifurcation point changes 

form approaching to a symmetric and unstable point. It is well seen that, 

not only the amplitude of the initial clearances but also the flexibility of 

the support strongly influenced the structural response. 

Second model consists of rigid bar with total length 2L an elastic hinge 

in the middle point, with the rotational stiffness k1 [Nm/rad]. There is 

also a transverse elastic support in the middle point. This support has 

the stiffness k2 [N/m] and the clearance o, whereas  denotes total 

transverse displacement of the middle point of the bar. Reaction forces 

at the end supports and at the middle support remain vertical also in the 

states of large deformation. Two stages of structural behaviour are 

observed. The first one for |∆|<∆o, when the clearance is open (Fig. 10a) 

and the structure responses as a typical Euler column with the stable 

symmetric bifurcation point. The second stage appears when the 

clearance is closed |∆|≥∆o and the structural stiffness k2 contributes to 

the bearing capacity. 

a) 

b) 

Fig. 10 Model structure: a) with internal supports with clearances at 

top and bottom side, b) initial geometrical imperfections (Ref. 11) 

Initial imperfection in the form of initial displacement  illustrated in Fig. 

10b induces initial rotations of bars and respective hinge rotations . 

These deformations are kinematic admissible therefore stress free. Then 

elastic deformations appear and induce moments in elastic hinge. 

In initial state when P = 0, the geometric relations take the form: 

1 1sin              
i i

i iu u
hence asin

L L
 = =  

(16) 

In current state, when P  0 we have: 

1 1 1u i eu u= +  and 
   

i e  = + (17) 

Now, the non-linear equilibrium equation takes the form: 

( ) ( )1 1
1 1 1 1 1 1 or      2

i
e i e i eu u

k P u u k asin asin P u u
L L


 

= + − = + 
 

(18) 

with unknown 
1

eu . 

Next, the structural response for various magnitude of imperfections is 

analysed . In Fig. 11 the influence of initial geometrical imperfection on 

model structure is presented. One can notice that structure responses as 

a typical Euler column with the stable symmetric bifurcation point. Set 

of plots from red to green, illustrate the influence of increasing values of 

initial geometrical imperfection on stability response of the structure. It 

is observed very interesting phenomenon that for the imperfect 

structure, the stable equilibrium path is accompanied by second 

unstable solution. The influence of imperfections combined with 

clearances is presented in Fig 12. The equilibrium paths are calculated 

for model structures with initial geometrical imperfections u2
i=0.01L 

and 0.07L and clearance ∆o=0.2L. The dash line represents the reference 

structure without internal supports, the solid lines correspond to the 

structure with various support stiffness k2
1<k2

2<k2
3. When clearance is 

open all plots are identical then clearance is closed then diversified plots 

are observed. One can notice that increasing value of support stuffiness 

results in displacement reduction.  

Fig. 11 Influence of initial geometrical imperfection on model 

structure (Ref. 11) 

Fig. 12 The equilibrium path for model structures with initial 

clearance and various support stiffness for two geometrical 

imperfections a) u2
i=0.07L , b) u2

i=0.01L (Ref. 11) 

More interesting is that there is an interaction between imperfections, 

clearance and support stiffness. The example presented in Fig. 12a 

pertains the reference structure which responses in form of stable post-

buckling path as well the structure with clearances also demonstrates 

stable equilibrium path for various support stiffness. Whereas, the 

example presented in Fig. 12b corresponds with case when reference 

structure beside stable equilibrium path demonstrates unstable post-

buckling behaviour. Now, introducing the initial clearance results in 

different structural response. For the sufficient high support stiffness k2
1 

and k2
2 the structure responses as typical Euler column, while for the 

relatively small k2
3 bifurcation point appeared and stable or unstable 

post-buckling behaviour is observed. This proves that the structure 

under consideration is sensitive to both the imperfections and 

clearances. 

4.1 Numerical analyses 

Numerical analyses were conducted on the example of the bar which 

consist of 2 thin-walled cross- sections connected by means of bolts 

(Ref. 11). In numerical model bolts were modelled in various ways. In 

order to avoid very fine mesh in bolts and in the surrounding area, 

which is rather unacceptable in the nonlinear analyses of total members, 

the action of bolts will be modelled by introducing constraints on 

displacements of FEM nodes, that are located in points A and B, where 
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the axis of a bolt crosses the middle planes of the web of Sigma sections 

(Fig. 13). The first model of connection is based on the assumption that 

the bolt is flexible and preserves only the constant distance between 

points A and B. Rotations are free. The name “Link” will be used. The 

second model will be called a “Tie”. In this model also the rotations are 

constrained. The last model referred to as a “Slot”, accounts for the 

clearances in the connection. It is assumed that the point A is fixed, 

whereas the point B may move along the slot with a predefined length. 

Two direction of the slot are analysed, namely horizontal and vertical. 

The “Slot” with and without friction is distinguished, too. 

Fig. 13 Connectors of cold formed double SIGMA elements 

(Ref. 11) 

In the study special attention is focused on interactive buckling. 

Therefore there were extracted a few first eigenvalues which correspond 

to global and local buckling, not only the lowest value of 1, which is 

usually of designers’ interest. In Fig. 14 the non-dimensional critical 

stress against column slenderness ratio L/iz is plotted, for double 

sections connected by connector type “Tie”. For the slenderness ratio 

L/iz<100, the values of critical stresses corresponding to local and global 

buckling mode are close to each other. In this case the designers should 

be rather conservative, because they can face the interactive buckling 

phenomena. 

Fig. 14 Critical stress for column made of 2 profile connected by 

connector type “Tie” (Ref. 11) 

The nonlinear study was carried out for a beam made of 2 profile of 

4 m span (L/i=100) with a spacing of connectors equal to 1.0 m. This is 

the case, where critical stresses, associated with local and/or global 

buckling modes, have similar values for several eigenmodes. 

In Fig.15 the plots of the load factor  versus “arc length parameter” in 

Riks method are shown.  

The plots refer to global (g) and local (l) shape of imperfections and 

different numerical models of connectors. The maximum amplitude of 

initial global imperfections was 4 mm and for local imperfections was 

2.04 mm. Plots 1l and 1g illustrate the equilibrium paths for connectors’ 

model “Tie” for local (l) and global (g) shape of imperfections, 

respectively. One can notice that the introduction of local initial 

imperfection results in stable equilibrium path. However, the same 

structure with global initial imperfection demonstrates unstable post-

buckling behaviour. In this model the maximum load capacity in 

relation to the cr of the structure with perfect geometry appeared to be 

reduced by 11%. Plots 2 and 3 describe the load capacity obtained for 

the structures with clearances (numerical models of connectors „Slot”) 

without and with friction, respectively. 

The analysis demonstrates that introduction of the clearances in the way 

of “Slot” connectors results in unstable post-buckling behaviour for 

local (l) and global (g) shape of imperfections. The reduction of the load 

capacity in the case without the friction in relation to the perfect 

structure is around 18%. One can also notice that the type of connectors 

strongly affects the post-buckling behaviour. 

Fig. 15 Load proportionality factor of column made of double  

cross section for global (g), local (l) shapes of imperfections 

(Ref. 11) 

4. CONCLUDING REMARKS

In the paper the stability analysis of simplified model structures with 

clearances and initial geometrical imperfections is performed. Due to its 

simplicity the exact close form solutions is described for both linear and 

nonlinear stability analysis. To illustrate the most typical stability 

response of structures with clearances the comparison with the structure 

without clearances is carried out. It was shown, that interaction between 

initial clearances and initial geometric imperfections can strongly affect 

the structural stability response. When the reference structure is 

characterised by stable post-buckling behaviour, the structure with 

clearances also demonstrates stable equilibrium path, which converges 

asymptotically to the former one. And conversely, when the reference 

structure responses in form of unstable post-buckling path, then it 

demonstrates sensitivity to geometric imperfections and small initial 

clearances, moreover unstable post-buckling behaviour can be reached. 

This observation can be interesting and useful for practical engineers, 

because the experience and intuition with respect to initial imperfections 

can be used when treating the clearances. Numerical examples illustrate 

the importance of proper numerical modelling of connection. It is 

demonstrated that the type of connector, its flexibility and the way of 

connection strongly influences the critical load and post-buckling 

behaviour. 
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